Water Cherenkov Detector Design Group

- Argonne NL
- Boston University*
- Brookhaven NL
- Caltech*
- Univ. of California, Davis*
- Univ. of California, Irvine*
- Drexel University*
- Duke University*
- Fermi NL

- Lawrence Livermore NL*
- Univ. of Maryland*
- Univ. of Minnesota
- Univ. of Pennsylvania*
- Rensselaer Poly. Inst.*
- Univ. of South Carolina*
- Univ. of Wisconsin*

What is a Water Cherenkov Detector?

- Charged particles with velocity faster than c/n produce directional, polarized photons
- Light sensors such as photomultiplier tubes can be used to detect the light
- This provides particle tracking and identification

Example of an electron neutrino interaction

The detector is essentially a giant camera

color in this plot represents intensity of the light

sub-nanosecond accuracy also obtained

ν_{μ} C.C. interaction: particle ID

- Sharp Ring Edge
- Cherenkov Angle < 42°
- → Easy to identify from electrons

Water Cerenkov Detectors

IMB 3 ktons

Kamiokande 1 kton

SNO 1 kton

Super-Kamiokande 22 ktons

Detectors for DUSEL

Note: the DUSEL detector will likely be realized in 2-3 modules

The muon rate in the DUSEL detector will be 1/30th that of Super-Kamiokande

22 ktons

Super-Kamiokande 300 ktons

DUSEL

IMB

Cosmic ray induced neutrinos

Would pass Super-K in statistics after ~1.5 years.

Issues:

- 1. improved sensitivity to $\nu_{\mu} \rightarrow \nu_{\tau}$
- 2. oscillation mixing angle
- 3. "exotic" phenomenon

Supernova Burst

- Huge signal for a galactic supernova
- More importantly: very precise knowledge of the cross-section (~0.2%) for $\overline{\nu}_e$ + p -> e⁺ + n makes the statistics meaningful!
- Double coincidence: zero background (need Gd)
- Positron spectrum mirrors neutrino spectrum

 $\begin{array}{ccc} & 10 \text{ kpc} & \text{with } 300 \text{ ktons} \\ \text{CC } \overline{\nu}_e & 70,000 \text{ events} \\ \text{NC } \nu_x & 3,000 \text{ events} \\ \text{ES } \nu_e & 3,000 \text{ events} \end{array}$

The feeble signal of all SNe

• Sum over the whole universe:

S. Ando and K. Sato, New J.Phys.6:170,2004.

Spectrum fitting in SK-I

Gadolinium Doping

- Sensitivity to neutron capture via 8 MeV gamma cascade (e.g. M.Vagins, NNN08)
- Inexpensive, low risk. Could be implemented after construction completed, no schedule risk.
- Technical challenges:
 - material compatibility. Chose materials that do not contaminate the water.
 - water treatment. Remove impurities but leave gadolinium in solution.

Status of theory: anti- v_e flux

Differences due to different inputs/methods

For a **Gd-loaded** 100 kton WC detector, estimates range from 2-20 events/year.

C.L., Astropart.Phys.26:190-201,2006, Fogli et al. JCAP 0504:002,2005, Volpe & Welzel, 2007, C.L. & O.L.G. Peres, to appear soon.

SK background of ~20/year significantly reduced by neutron tagging. (Beacom and Vagins)

THICK VICINCIALIONS OF BIARCO

Nucleon Decay

- Neutrinos, electrons, photons, and protons are the only known stable particles
- Stable over what time scale?
- Lifetime of universe 10¹⁰ years
- Many theories that try and unite the known forces of nature into a "Grand Unified Theory" (GUT) predict that free protons will decay with lifetimes of 10³⁰ years or longer

Unification of Running Coupling Constants

$$p \to e^+ \pi^0$$

Solar Neutrinos: A well-understood beam of low-energy $\nu_{\rm e}$

- water Cherenkov technique allows for tracking
- neutrino-electron scattering preserves direction of parent neutrino
- recoil electron spectrum related to neutrino spectrum
- more than 200 per day!

DUSEL LONG BASELINE EXPERIMENT

Neutrino Mixing
$$\begin{vmatrix} v_e \\ v_{\mu} \\ v_{\tau} \end{vmatrix} = \begin{vmatrix} v_{e1} & U_{e2} & U_{e3} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} \end{vmatrix} \begin{vmatrix} v_1 \\ v_2 \\ v_3 \end{vmatrix}$$

− *U*: 3 angles. 1 CP-phase + (2 Majorana phases)

$$U = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & 0 & s_{13}e^{i\delta} \\ 0 & 1 & 0 \\ -s_{13}e^{-i\delta} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} c_{21} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

atmospheric

solar

$$s_{ij} = sin\theta_{ij}$$
 $c_{ij} = cos\theta_{ij}$

10/1/2009

but we don't know the mass ordering or absolute mass scale

Also – Do v's violate CP?

If θ_{13} is large enough Our DUSEL detector can answer the mass hierarchy and CP questions

10/1/2009 R.Svoboda **QUESTIOTIS** 20

ν_{e} appearance in a ν_{μ} beam

$$P(v_{\mu} \rightarrow v_{e}) = (2c_{13}s_{13}s_{23})^{2} sin^{2}\Phi_{31}$$

$$+8c_{13}^2s_{12}s_{13}s_{23}(c_{12}c_{23}cos\delta - s_{12}s_{13}s_{23})cos\Phi_{32}sin\Phi_{31}sin\Phi_{21}$$

$$-8c_{13}^2c_{12}^2c_{23}s_{12}s_{13}s_{23}sin\delta sin\Phi_{32}sin\Phi_{31}sin\Phi_{21}$$

$$+4s_{12}^2c_{13}(c_{12}^2c_{23}^2+s_{12}^2s_{23}^2s_{13}^2-2c_{12}c_{23}s_{12}s_{23}s_{13}cos\delta)sin^2\Phi_{21}$$

$$-8c_{13}^2s_{13}^2s_{23}^2(1-2s_{13}^2)(aL/4E)cos\Phi_{32}sin\Phi_{31}$$

$$a = constant X n_e E$$

CP:
$$a \rightarrow -a$$
, $\delta \rightarrow -\delta$

10/1/2009

Experiments and Projects

A Project

Major Project Components

- Neutrino Beam. Plan initially for 700 kw beam with potential for up to 3 MW later. Project Office at FNAL.
- Near Detector: for characterization of the beam. LANL proposed to have a major role.
- Far Detector. Project Office at BNL and S4 proposal from NSF for Water Cherenkov detector development. LAr detector development through FNAL (see Bonnie's talk)

Large Cavity, Water Cerenkov Detector

Water: 53m Dia. x 54m vertical,

Fiducial Volume: 50m Dia. x 51m vertical

4850 Level Conceptual Layout

The Big Hole

- One large cavity is included in the scope of DUSEL
- Large Cavity Board report: a large 100 kton detector could be built safely and economically. 150 kton cavities may also be possible.
- RFP for cavity cost to be issued very soon
- DOE may also build one cavity

- Keep Rock out
- Keep water in
- Keep costs down

Possible Solutions

	Unit	Steel self supporting	Concrete blocks	Unitary post- stressed concrete vessel self supporting	Liner on shotcrete		Pressure balanced wall
Fiducail Radius	m	25	25	25	25	25	
Gap between fiducial radius and PMT module	m	1	1	1	1	1	1
PMT module thickness	m	0.5	0.5	0.5	1	1	1
Gap between PMT module and tank wall	m	0	0	0	0.2	0	0.2
Sealing/coating layer thickness	m	0.005	0.005	0.005	0.005	0.005	
Tank water radius	m	26.51	26.51	26.51	27.21	27.01	27.21
Tank wall thickness top	m	0.05	0.5	1	0.1	1	0.01
Tank wall thickness bottom	m	0.12	0.5	1.0	0.1	1	0.0
Tank wall thickness average	m	0.09	0.50	1.00	0.10	1.00	0.01
Tank outer radius	m	26.63	27.01	27.51	27.31	28.01	27.22
Access/drainage/balance gap	m	2	0.2	3	0	0	0.5
Rock wall raidus	m	28.63	27.21	30.51	27.31	28.01	27.72
Tank wall mass	tonne	5989	11453	23331	2316	23755	231
Fiducial volume	cu m	100000	100000	100000	100000	100000	100000
Fiducial height	m	51	51	51	51	51	51
Tank water height	m	54	54	54	54	54	54
Tank floor thickness	m	2	2	2	2	2	2
Excavation height	m	56	56	56	56	56	56
Excavation volume (without upper part)	cu m	144155	130207	163712	131166	137978	135184
Normalized		1.04	0.94	1.19	0.95	1.00	1.00
		ANGEL STATE		10000			

SK miniBooNE IMB, SNO KamLAND

Photon Economics

- About 50% of the detector cost is expected to be in photosensors
- Even small improvements can make a big impact
- Development of light enhancement techniques underway
- New high QE PMTs are now available will be tested in a statistically large sample this year
- Prevention of implosion chain reaction (BNL+U.S. Navy)
- Developments outside S4: waveshifting dyes, MCP development

Other Experiment Components

- Electronics
- Water transparency
- Gadolinium loading
- Calibrations
- Project Integration
- Safety
- Environmental Impact
 There is excellent cooperation between the DOE and NSF groups

Large Cavity, Water Cerenkov Detector, Cross Section at bottom

Super-Kamiokande I

Run 999999 Sub 0 Ev 4 02-11-06:00:12:25

Inner: 3174 hits, 6998 pB

Outer: 5 hits, 5 pB (in-time) Trigger ID: 0x03

D wall: 903.3 cm Fully-Contained Mode

Example Event (p \rightarrow µ+ π 0)

Time (ns)

- Fully contained, Fiducial volume
- 2 or 3 rings
- Correct PID of rings (e-like/µ-like)
- π0 mass 85-185 MeV/c2
- Correct # of µ-decay electrons
- Mass range 800-1050 MeV/c2
- Net momentum < 250 MeV/c

Improved π^0 /e separation

- 2-R e-like tag (old ring-finder)
- π^0 fitter (improved ring-finder)

Excellent particle identification

Why DUSEL?

- 1300 km distance is significant for determination of neutrino mass hierarchy
- Deep underground site allows rich physics program in addition to LB neutrinos

Spectra FNAL to DUSEL (WBLE:wide band low energy)

- 60 GeV at odeg: CCrate: 14 per (kT*10^20 POT)
- 120 GeV at 0.5deg:CCrate: 17 per(kT*10^20POT)

Work of M. Bishai and B. Viren using NuMI simulation tools BROOKHAVEN

PMT considerations

	10 inch R7081	20 inch R3600
Number (25% cov)	-50000	-14000
QE	25%	20%
CE	-80%	-70%
rise time	4 ns	IO ns
Tube length	30 cm	68 cm
Weight	1150 gm	8000 gm
Vol.	~5 lt	-50 lt
pressure rating	o.7Mpa	o.6Mpa
	o.6 deg	1.1 deg
∢granularity	1.0 deg	2.1 deg

Proton Decay Limits

Data so far

PMT	size	Break Press
R7081/ng I	10inch	148 psi
XP1807 I	I2 inch	92 psi
хр18060 І	8 inch	35 psi
R7081 2	10 inch	cycled 132psi
R7081 3	10 inch	cycled 132 psi
R7081 4	10 inch	cycled 132 psi
R7081/lowr1	10 inch	205 psi
R7081/lowr 2	10 inch	218 psi
R7081	10 inch	292 psi
ETL 9350ka	8 inch	68 psi
R7081	10 inch	173 psi

Hamamatsu tested 3 R7081 upto ~10 atm.

One broke at 10 atm.

On each tube, there is data on glass thickness, pressure pulse duration, etc. This it borosilicate glass with thickness ranging from 0.08 to 0.12 inch.

Typical R7081 failure (TA3085 failed at 13.4 bar)

NAVSEA test stand

FIG. 2. Test stand schematic.

FIG. 1. Test stand with test sample and instrumentation installed.

78 high quantum efficiency 10"PMT successfully tested for use in IceCube

- More than 4000 sensors with standard 10" PMT (R7081-02) integrated and tested in IceCube
- 78 high quantum efficiency PMT (10") tested with IceCube standard production test program.
- Result:
 - Quantum efficiency ~38% higher (405 nm, -40C)
 - No problems found
 - Low temperature (-40C) noise behavior scales with quantum efficiency as expected.
- Plan to use high QE PMT on 6 Deep Core strings for enhanced sensitivity at low energies (<100GeV, dark matter)
- Sensors already at the South Pole

Example data R7081 (10 inch)

Copyright @ Hamamatsu Photonics K.K. All Rights Reserved.

Cherenkov Radiation:

$$\frac{d^2N}{dxd\lambda} = \frac{2\pi\alpha z^2}{\lambda^2} \left(1 - \frac{1}{\beta^2 n^2(\lambda)} \right)$$

Cherenkov spectrum is dominated by UV photons. Typical PMT Quantum Efficiencies are poor in most of this range.

Idea: Absorb UV photons and re-emit them at longer wavelengths.

Preliminary Data (i.e. taken last week):

Tagged muon spectrum:

Downward travelling muons are tagged in scintillator paddles.

Water Purification system:

Beakers are illuminated by a fluorescent UV light

Tap Water

1ppm 4-MU

Tap Water

1ppm 4-MU after ~5min in DI system

Chromatic Dispersion in Water

The Cherenkov photons will propagate at the group velocity given by:

$$v_g = \frac{d\omega}{dk} = c \left[\frac{1}{n(\lambda)} + \frac{\lambda}{n^2(\lambda)} \frac{dn}{d\lambda} \right]$$

Higher energy photons will propagate slower. This becomes increasingly significant at sub 300nm wavelengths where detection sensitivities are already becoming very small.

300 kTon + 2.4 MW

Mass Hierarchy

M.Dierckxsens

CP violation

5% background uncertainty 120 GeV 0.5 OA

100 kTon + 700 KW

Hierarchy

M.Dierckxsens

5% background uncertainty 120 GeV 0.5 OA